Foreword to the First Edition

The term spaghetti code is universally understood as an insult. All good computer scientists worship the god of modularity, since modularity brings many benefits, including the all-powerful benefit of not having to understand all parts of a problem at the same time in order to solve it. Modularity thus plays a role in presenting ideas in a book, as well as in writing code. If a book’s material is organized effectively—Modularly—the reader can start at the beginning and actually make it to the end.

The field of network protocols is perhaps unique in that the “proper” modularity has been handed down to us in the form of an international standard: the seven-layer reference model of network protocols from the ISO. This model, which reflects a layered approach to modularity, is almost universally used as a starting point for discussions of protocol organization, whether the design in question conforms to the model or deviates from it.

It seems obvious to organize a networking book around this layered model. However, there is a peril to doing so, because the OSI model is not really successful at organizing the core concepts of networking. Such basic requirements as reliability, flow control, or security can be addressed at most, if not all, of the OSI layers. This fact has led to great confusion in trying to understand the reference model. At times it even requires a suspension of disbelief. Indeed, a book organized strictly according to a layered model has some of the attributes of spaghetti code.

Which brings us to this book. Peterson and Davie follow the traditional layered model, but they do not pretend that this model actually helps in the understanding of the big issues in networking. Instead, the authors organize discussion of fundamental concepts in a way that is independent of layering. Thus, after reading the book, readers will understand flow control, congestion control, reliability enhancement, data representation, and synchronization, and will separately understand the implications of addressing these issues in one or another of the traditional layers.

This is a timely book. It looks at the important protocols in use today—especially the Internet protocols. Peterson and Davie have a long involvement in and much experience with the Internet. Thus their book reflects not just the theoretical issues in protocol design, but the real factors that matter in practice. The book looks at some of the protocols that are just emerging now, so the reader can be assured of an up-to-date perspective. But most importantly, the discussion of basic issues is presented in a way that derives from the fundamental nature of the problem, not the constraints of the layered reference model or the details of today’s protocols. In this regard, what this book presents is both timely and timeless. The combination of real-world relevance, current examples, and careful explanation of fundamentals makes this book unique.

David Clark
Massachusetts Institute of Technology
1996